MATH 240 Qualifying Exam
September 14, 2021

Instructions: 3 hours, open book/notes (only Folland or personal lecture notes; no HW or other solutions). You may use without proofs results proved in Folland up to Section 8.3. Present your solutions clearly, with appropriate detail.

1. (30 pts) Let \(f \in C(\mathbb{R}) \) and let \(A \subseteq \mathbb{R} \) be a Borel set such that \(f \) is differentiable at each \(x \in \mathbb{R} \setminus A \) and \(f'(x) = 0 \) for all such \(x \).

(a) If \(A \) is closed and countable, show that \(f \) is constant.

(b) If \(A \) has Lebesgue measure 0, must \(f \) be constant? Prove or find a counterexample.

2. (30 pts) Does there exist a Borel measurable function \(f : \mathbb{R} \to [0, \infty) \) such that \(\int_a^b f(x) \, dx = \infty \) for all real numbers \(a < b \)? Either find an example or show that no such \(f \) exists.

3. (30 pts) Let \(p \in (1, \infty) \), and for \(f \in L^p(\mathbb{R}) \) define \(T f(x) := \int_0^1 f(x + y) \, dy \).

(a) Show that \(\|T f\|_p \leq \|f\|_p \), and equality holds if and only if \(f = 0 \) almost everywhere.

(b) Prove that \((I - T)(L^p(\mathbb{R})) \neq L^p(\mathbb{R}) \), where \(I \) is the identity map on \(L^p(\mathbb{R}) \).

4. (30 pts) Let functions \(f_n \in C([0, 1]) \) satisfy \(\sup_n |f_n(x)| < \infty \) for each \(x \in [0, 1] \). Show that there are \(0 \leq a < b \leq 1 \) such that \(\sup_n \|f_n \chi_{(a,b)}\|_u < \infty \).

5. (20 pts) Let \(f_n, f \in L^2(\mathbb{R}) \) satisfy \(f_n \rightarrow f \) weakly and \(\|f_n\|_2 \rightarrow \|f\|_2 \) as \(n \rightarrow \infty \). Show that \(f_n \rightarrow f \) in \(L^2(\mathbb{R}) \).

6. (30 pts) Let \(\delta_x \) denote the Dirac delta mass at \(x \in \mathbb{R}^n \). Let \(\{x_j\}_{j=1}^\infty \) be a sequence in \(\mathbb{R}^n \), \(\{c_j\}_{j=1}^\infty \) a sequence of positive numbers, and \(\mu \) the Borel measure on \(\mathbb{R}^n \) corresponding to the series \(\sum_{j=1}^\infty c_j \delta_{x_j} \). Prove that \(\mu \) is Radon if and only if for all convergent subsequences \(\{x_{j_k}\}_{k=1}^\infty \) it holds that \(\sum_{k=1}^\infty c_{j_k} < \infty \).

7. (30 pts) For any \(f \in L^2(\mathbb{R}) \cap C^1(\mathbb{R}) \) show that
\[
\left(\int_{\mathbb{R}} x^2 |f(x)|^2 \, dx \right) \left(\int_{\mathbb{R}} \xi^2 |\hat{f}(\xi)|^2 \, d\xi \right) \geq \frac{1}{16\pi^2} \left(\int_{\mathbb{R}} |f(x)|^2 \, dx \right)^2.
\]
Here \(\hat{f} \) is the Fourier transform of \(f \) and \(dx, d\xi \) represent the Lebesgue measure on \(\mathbb{R} \).