Define any symbol you use unless its meaning is clear from context. Name any result you use if it has a name. Be concise and clear. Justify all your answers.

Problem 1. Suppose that we observe data in pairs $(X,Y) \in \mathbb{R}^d \times \{\pm 1\}$, where the data come from a logistic model with $X \sim P_0$ and

$$
p_\theta(y|x) = \frac{1}{1 + e^{-y \cdot x^\top \theta}}.
$$

Define the log-loss $\ell_\theta(y|x) = \log(1 + e^{-y \cdot x^\top \theta})$. Let $\hat{\theta}_n$ minimize the empirical logistic loss

$$
L_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell_\theta(Y_i|X_i) = \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-Y_i X_i^\top \theta})
$$

from pairs (X_i,Y_i) drawn from the logistic model with parameter θ_0. Assume that the covaraites $X_i \in \mathbb{R}^d$ are i.i.d. and satisfy $E(X_i \cdot X_i^\top) = \Sigma$ is positive definite and $E\|X_i\|_2^4 < \infty$.

(a) Let $L(\theta) = \mathbb{E}_{\theta_0}\{\ell_\theta(Y|X)\}$ be the population logistic loss. Describe conditions under which θ_0 is the unique minimizer of $\theta \mapsto L(\theta)$, that is, $\theta_0 \in \arg\min_{\theta \in \mathbb{R}^d} L(\theta)$.

(b) Under these assumptions show that $\hat{\theta}_n$ is consistent estimator of θ_0 as $n \to \infty$. Provide details of your work. Hint: You may use the following fact about convex functions. For any convex function h, if there is some $r > 0$ and a point x_0 such that $h(x) > h(x_0)$ for all x such that $\|x - x_0\|_2 = r$. Then $h(x') > h(x_0)$ for all x' with $\|x' - x_0\|_2 > r$.

(c) Find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta_0)$, provided that it is consistent. Describe the asymptotic covariance matrix of $\hat{\theta}_n$. Provide a heuristic argument to justify your findings.
Problem 2. Suppose that X_1, \ldots, X_n is a random sample from a normal distribution with unit variance. Let $F(t) = \mathbb{P}(X_1 \leq t)$ be the cumulative distribution function (CDF) of X_1, and let $F_n(\cdot)$ be the empirical CDF. Given some $t \in \mathbb{R}$,

(a) Show that both $F_n(t)$ and $\Phi(t - \bar{X}_n)$ are consistent estimators of $F(t)$, where $\bar{X}_n = (1/n) \sum_{i=1}^{n} X_i$;
(b) Compare the asymptotic variance of the estimators $F_n(t)$ and $\Phi(t - \bar{X}_n)$.
Refer by number any result from the reference sheet that you use.

Problem 3. Suppose we observe $X \sim \text{Bin}(n, \theta)$, where n is known, and our goal is to estimate θ. We use the *squared error loss*. (Note that an estimator δ is here simply a function from $\{0, \ldots, n\}$ to \mathbb{R}.)

(a) Derive an optimal estimator among unbiased estimators. Is it unique in that regard?

In what follows, we measure performance of an estimator δ based on the following average risk

$$r(\delta) = \int_0^1 \mathbb{E}_\theta[(\delta(X) - \theta)^2]w(\theta)d\theta,$$

where $w(\theta) = \frac{1}{\theta(1 - \theta)}$.

(b) Is the prior proper or improper? Explain.

(c) Show that $r(\delta) < \infty$ if and only if $\delta(0) = 0$ and $\delta(n) = 1$.

(d) Derive an estimator that minimizes this average risk. Is it unique in that regard?