Complex Analysis Qualifying Exam – Spring 2021

Name: __

Student ID: _______________________________________

Instructions:

The exam is closed notes, closed books, no internet, no outside help.

You do not have to reprove any results from Conway or shown in class. However, if using a homework problem, please make sure you reprove it.

You have 180 minutes to complete the test.

Notation: $\Delta = \{ z \in \mathbb{C} \mid |z| < 1 \}$.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>
Problem 1. [10 points.]

How many solutions, counted with multiplicities, does the equation

\[z^3 \sin z + 5z^2 + 2 = 0 \]

have in the unit disc \(|z| < 1|\)?
Problem 2. [10 points; 5, 5.]

Let K be a proper closed arc of the unit circle $|z| = 1$.

(i) Is there a sequence of polynomials $P_n(z)$ such that $P_n(z) \to \bar{z}$ uniformly in K?

(ii) Is there a sequence of polynomials $P_n(z)$ such that $P_n(z) \to \bar{z}$ uniformly on the circle $|z| = 1$?

Please justify your answers.
Problem 3. [10 points.]

Let \mathcal{F} denote the family of holomorphic functions $f : \Delta \to \mathbb{C}$ such that

(i) f omits all strictly negative real numbers, and

(ii) $f(0) = 1$.

Find the maximum value of $|f'(0)|$ as $f \in \mathcal{F}$.
Problem 4. [10 points.]

Let \(f : G \to \mathbb{C} \) be a holomorphic function in \(G = \{ z : |z| < 2 \} \) such that \(|f(z)| < 1 \) for \(z \in G \).
Assume that
\[
 f(1) = f(-1) = f(i) = f(-i) = 0.
\]
Show that
\[
 |f(0)| \leq \frac{1}{15}.
\]
Problem 5. [10 points.]

Let $a_n = 1 - \frac{1}{n}$ for $n \geq 2$. Show that there are no bounded holomorphic functions $f : \Delta \to \mathbb{C}$ with zeros only at the a_n's.
Problem 6. [10 points.]

Let \(\{u_n(x, y)\} \) be a sequence of harmonic functions in an open connected set \(G \subset \mathbb{R}^2 \), converging uniformly on compact subsets of \(G \).

Show that the sequence of partial derivatives \(\frac{\partial u_n}{\partial x} \) converges uniformly on compact subsets of \(G \).
Problem 7. [10 points.]

Let \(\{ f_n \} \) be a sequence of automorphisms of the unit disc \(\Delta \), converging locally uniformly in \(\Delta \) to a nonconstant function \(f \). Show that \(f \) is an automorphism of \(\Delta \).

Hint: Examine the family \(\mathcal{F} \) consisting of the inverse automorphisms \(f_n^{-1} : \Delta \to \Delta \).